- AI Dev - 인공지능 개발자 모임
- 정보공유
- 챗봇 딥러닝
글 수 293
얼마전 딥마인드가 만든 Gopher를 소개한 적이 있습니다. GPT-3의 1750억개보다 큰 2800억개의 파라미터를 가진 거대모델입니다. 이와 동시에 RETRO(Retrieval-Enhanced Transformer)도 같이 공개했었는데요. 개인적으로는 Gopher보다 훨씬 더 흥미로웠습니다.
지금까지 거대모델은 모든 정보를 파라미터 안에 기억하고 있었습니다. 더 많이 학습하기 위해서는 필연적으로 모델의 크기도 커질 수 밖에 없습니다. 반면에 RETRO는 75억 파라미터로 작은 편이지만 Gopher를 능가하는 성능을 보입니다. 16개의 벤치마크 중 9개에서 더 높은 점수를 얻었습니다
RETRO는 이름처럼 검색을 기반으로 한 거대모델입니다. 모든 것을 기억하지 않고 먼저 외부에서 정보를 검색합니다. 그리고 이를 활용하여 결과를 생성합니다. ODQA(Open-Domain Question Answering)와 비슷합니다. 보통 ODQA는 Retriever에서 문서를 찾고, 이를 그대로 Reader의 입력으로 넣습니다. 반면에 RETRO는 검색으로 찾은 정보를 임베딩으로 변환하고 cross-attention으로 모델에 결합했습니다.
알파고도 그랬지만 딥마인드가 인공지능의 새로운 방향을 계속 보여주고 있습니다. 앞으로 거대모델의 경쟁에서 RETRO가 큰 변화를 가져오지 않을까 생각됩니다.