글 수 26


http://www.kthdaisy.com/recommendation_system_kthdaisy/

 

 

 

추천 시스템의 가장 대표적인 기술인 협업 필터링(Collaborative filtering)에 대해 설명하고 있는 글입니다. 현재 이런 방법은 많은 서비스에서 아래와 같이 매우 유용하게 활용되고 있습니다.

 

Netflix : 대여되는 영화의 2/3가 추천으로부터 발생

Google News : 38% 이상의 조회가 추천에 의해 발생

Amazon : 판매의 35% 가 추천으로부터 발생

 

 

 

< 인공지능 개발자 모임 >

- 페이스북 그룹에 가입하시면 인공지능에 대한 최신 정보를 쉽게 받으실 수 있습니다.

https://www.facebook.com/groups/AIDevKr/

 

엮인글 :
List of Articles
제목 글쓴이 날짜 조회 수
머신러닝 경진대회 - 카카오 아레나 [1] 깊은바다 2018-11-07 117
빅데이터, 더 나은 데이터 깊은바다 2018-06-27 215
유튜브의 완벽한 피드 깊은바다 2018-06-24 128
선형회귀분석을 통한 머신러닝의 기본 개념 이해 깊은바다 2018-06-14 301
영화 추천 파이썬 예제 [1] 깊은바다 2018-03-16 993
머신러닝 용어집 by Google [1] LegenDUST 2018-03-16 248
구글 머신러닝 단기집중과정 [2] 깊은바다 2018-03-01 458
teachable machine file [1] LegenDUST 2017-10-14 197
우버 엔지니어가 알려주는 머신러닝 이야기 깊은바다 2017-10-11 351
머신러닝에 대한 간단한 설명 깊은바다 2017-09-16 397
어떻게 하면 데이터 사이언티스트가 될 수 있나요? 깊은바다 2017-09-12 164
머신 러닝에 대한 시각적 입문 [2] LegenDUST 2017-09-06 275
학습과정과 데이터셋 이야기 깊은바다 2017-04-11 406
추천 시스템 분석 – 어떻게 아마존과 넷플릭스가 당신의 취향을 예상하는가? 깊은바다 2017-04-07 1091
넷플릭스 맞춤 추천의 비법 file 깊은바다 2017-04-02 263